全讯网-皇冠网

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

k7娱乐城开户| 爱赢百家乐官网现金网| 百家乐官网博弈指| 伯爵百家乐的玩法技巧和规则| 百家乐官网tt赌场娱乐网规则| 真人游戏下载| 百家乐官网软件辅助器| 足球即时比分网| 百家乐娱乐城送分| 哪个百家乐官网投注平台信誉好| 百家乐书| 棋牌游戏平台有哪些| 百家乐官网真人娱乐城陈小春| 大发888娱乐城注册送筹码| 大佬百家乐现金网| 龙虎斗| 郑州百家乐高手| 百家乐官网怎么样投注| 杨公24山择日| 太阳城娱乐城管理网| 莫斯科百家乐的玩法技巧和规则 | 澳门百家乐游戏| 雅加达百家乐官网的玩法技巧和规则| E乐博| 大发888娱乐登录| 手机百家乐游戏| 至尊百家乐娱乐场| 百家乐能作弊吗| 百家乐官网小路单图解| 太阳城百家乐官网杀祖玛| 姚安县| 澳门新濠天地| 百家乐象棋赌博| 优博百家乐官网的玩法技巧和规则| 娱乐城注册送钱| 电玩城百家乐技巧| 博彩百家乐软件| 百家乐视频游戏网站| 百家乐官网扫瞄光纤洗牌机扑克洗牌机扑克洗牌机 | 娄底市| 真人百家乐是骗局|