全讯网-皇冠网

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

投真钱百家乐官网必输吗| 盈江县| 大发888娱乐城casino| 百家乐官网1326投注| 模拟百家乐下| 如何看百家乐官网路| 百家乐平注法规则| 百家乐官网连开6把小| 百家乐操作技巧| 24山分别指什么| 百家乐官网视频对对碰| 百家乐游戏免费试| 明升国际| 百家乐赌博赌博网站| 大家赢百家乐官网投注| 大发888-大发娱乐城下载| 澳门百家乐庄闲的玩法| 百家乐官网程序开户发| 铜鼓县| 黄金百家乐的玩法技巧和规则| 哪家百家乐官网优惠最好且信誉不错| 百家乐官网最新打法| 新全讯网xb112| 噢门百家乐玩的技巧| 百家乐官网游戏卡通| 百家乐官网正网包杀| 博乐娱乐城| 永利高a2| 百家乐实战技术| 百家乐官网打法介绍| 百家乐官网下注瀛钱法| 网络博彩群| 大发888娱乐游戏平台| 网上百家乐赌场娱乐网规则| 十六浦百家乐官网的玩法技巧和规则| 百家乐官网游戏全讯网2| 任你博百家乐官网的玩法技巧和规则| 777博彩| 凌龙棋牌游戏大厅| 澳门百家乐网上| 澳门百家乐奥秘|