全讯网-皇冠网

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

大发888登录| A8百家乐娱乐网| 博娱乐城| 百家乐官网007| 太阳城会员| 澳门百家乐官网职业赌客| 真人百家乐官网试玩账号| 百家乐龙虎台布作弊技巧| 百家乐官网注码论坛| 真人百家乐什么平台| 威尼斯人娱乐棋牌| 五张百家乐官网的玩法技巧和规则| 百家乐筹码防伪| 百家乐官网真人游戏娱乐场| 最大的百家乐网站| 彩会百家乐官网游戏| 二八杠游戏平台| 百家乐官网庄闲| 足球竞猜| 百家乐玩法开户彩公司| 百家乐官网筛子游戏| 百家乐娱乐网真人娱乐网| 香港百家乐官网赌城| 白金会娱乐场怎么样| 百家乐官网操作技巧| 澳门百家乐官网加盟| 百家乐发牌靴8| 百家乐官网首选| 至棒娱乐备用| 百家乐作| 大佬百家乐官网的玩法技巧和规则 | 百家乐水浒传| 百家乐投注平台信誉排名| 百家乐官网群dmwd| 百家乐官网庄闲下载| 澳门赌场招聘网| 太阳城娱乐官方网站| 怎样玩百家乐赢钱| 织金县| 威尼斯人娱乐城可靠吗| 赌博百家乐有技巧吗|