全讯网-皇冠网

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

百家乐官网开户博彩论坛| 澳门百家乐官网是骗人的| 银泰百家乐官网龙虎斗| 百家乐官网庄家出千内幕| 百家乐官网庄家优势| 利都百家乐官网国际赌场娱乐网规则| 百家乐官网赌博规| 百家乐公式分析| 保单百家乐游戏机厂家| 百家乐德州扑克发牌盒| 大发888总结经验| 百家乐官网如何取胜| 澳门百家乐官网赢钱公式不倒翁 | 缅甸百家乐官网赌| 百家乐必知技巧| 波克棋牌免费下载| 百家乐赌博筹码大不大| 上海德州扑克俱乐部| 保单百家乐官网路单| 百家乐官网一起多少张牌| 百家乐庄的概率| 至尊百家乐网| 麻将二八杠技巧| 资中县| 月亮城百家乐官网的玩法技巧和规则 | 百家乐官网园sun811.com| 我的做生意财位| 百家乐赌场在线娱乐| 体球网| 榆次百家乐官网的玩法技巧和规则| 百家乐赌博分析网| 百汇娱乐| 百家乐官网娱乐城公司| 玩百家乐官网技巧看| 威尼斯人娱乐城博彩| 三穗县| 千亿娱百家乐官网的玩法技巧和规则 | 在线百家乐赌场| 黄金城百家乐苹果版| 百家乐官网技巧和规律| 百家乐娱乐城网站|