全讯网-皇冠网

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

电脑版百家乐官网分析仪| 皇冠足球开户| 微博| 专业百家乐官网软件| 百家乐官网平技巧| 百家乐官网下注技术| 易胜博百家乐官网下载| 太阳城百家乐杀猪吗| 老人头百家乐官网的玩法技巧和规则| 线上百家乐官网试玩| 百家乐路子分析| 闲和庄百家乐娱乐网| 威尼斯人娱乐城骰宝| 百家乐不能视频| 木棉百家乐网络| 网上百家乐解密| 大发888真人真钱游戏| 网上赌百家乐可信吗| 大发888娱乐城电脑版下载| 天堂鸟百家乐官网的玩法技巧和规则 | 百家乐官网棋牌游戏币| 大发888真钱娱乐场下载| 皇冠国际足球| 百家乐平7s88| 博彩网百家乐官网的玩法技巧和规则 | 鑫鼎百家乐官网娱乐城| 大发888开户注册网站| 大发888网页ban| 月华百家乐官网的玩法技巧和规则| 金沙百家乐官网娱乐城场| 大发888娱乐平台下载| 博九百家乐的玩法技巧和规则| 百家乐官网隔一数打投注法| 钟祥市| 百家乐官网怎样赢| 百家乐官网职业赌徒的解密| 澳门百家乐小| 百家乐官网真人娱乐平台| 诚信百家乐官网平台| 菲律宾百家乐官网娱乐平台| 大发888娱乐城casino|