全讯网-皇冠网

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

淘金盈赌场有假吗| 大发888怎么注册不了| 玩百家乐技巧巧| 百家乐官网注册开户送现金| 缅甸百家乐赌场| 模拟百家乐官网下载| 崇义县| 威尼斯人娱乐城首存优惠| 百家乐官网计划工具| 代理百家乐官网最多占成| 搏天堂| 盐城百家乐的玩法技巧和规则| 没费用百家乐官网分析器| 百家乐官网如何打公式| 百家乐分析| 威尼斯人娱乐城官网地址| 网上百家乐是假| 百家乐官网平注秘籍| 单机百家乐官网小游戏| 百家乐官网台布21点| 宜兰县| 八大胜娱乐场| 嘉兴太阳城大酒店| 百家乐凯时娱乐平台| 百家乐是否有规律| 2024九紫离火| 大众百家乐官网的玩法技巧和规则 | 大发888开户日博备用| 罗盘24方位| 澳门百家乐官网新濠天地| 百家乐官网游戏合法吗| 新加坡百家乐赌法| 赌博百家乐秘籍| 百家乐的路单怎样看| 百家乐官网赢多少该止赢| 百家乐官网双龙出海注码法| 最好的百家乐官网娱乐场| 百家乐官网赌坊| 澳门百家乐官网什么规则| 百家乐官网博之道娱乐城| 波音网百家乐官网合作|