全讯网-皇冠网

今天是
今日新發(fā)布通知公告1條 | 上傳規(guī)范

【百家大講堂】第288期: 光譜解混與端元可變性研究

來(lái)源:   發(fā)布日期:2019-11-26
【百家大講堂】第288期: 光譜解混與端元可變性研究 
  講座題目:光譜解混與端元可變性研究 
  報(bào)  告 人:Jocelyn Chanussot 
  時(shí)    間:2019年11月29日 下午15:00-17:00
  地    點(diǎn):中關(guān)村校區(qū)10號(hào)教學(xué)樓205
  主辦單位:研究生院、 信息與電子學(xué)院
  報(bào)名方式:登錄北京理工大學(xué)微信企業(yè)號(hào)---第二課堂---課程報(bào)名中選擇“【百家大講堂】第288期:光譜解混與端元可變性研究  ”
 
【主講人簡(jiǎn)介】
 Jocelyn Chanussot,法國(guó)格勒諾布爾理工學(xué)院教授。 長(zhǎng)期從事于圖像分析,數(shù)據(jù)融合,機(jī)器學(xué)習(xí)以及人工智能在遙感領(lǐng)域應(yīng)用等研究。現(xiàn)任IEEE地球科學(xué)與遙感學(xué)會(huì)副主席,負(fù)責(zé)協(xié)會(huì)會(huì)議組織相關(guān)工作。擔(dān)任IEEE T-GRS雜志與IEEE T-IP雜志副主編,從2011年到2015年,曾任 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 雜志主編。 發(fā)表國(guó)際期刊論文160余篇, 多次獲得相關(guān)國(guó)際學(xué)術(shù)獎(jiǎng)勵(lì)。 2012年當(dāng)選美國(guó)IEEE會(huì)士, 2018、2019年兩次入選湯森路透社高被引科學(xué)家。 
 Jocelyn Chanussot is currently a Professor of signal and image processing at the Grenoble Institute of Technology, France. His research interests include image analysis, data fusion, machine learning and artificial intelligence in remote sensing. Dr. Chanussot is the Vice President of the IEEE Geoscience and Remote Sensing Society, in charge of meetings and symposia. He is an Associate Editor of the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING and the IEEE TRANSACTIONS ON IMAGE PROCESSING. He was the Editor-in-Chief of the IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING from 2011 to 2015. He is the co-author of over 165 papers in international journals and has received several scientific awards and recognitions.  He is a Fellow of the IEEE (2012) and a Highly Cited Researcher (Clarivate Analytics/Thomson Reuters, 2018, 2019).
 
【講座信息】
光譜解混用于復(fù)原圖像中物質(zhì)的純凈光譜,是高光譜成像中一項(xiàng)重要的逆問(wèn)題。線性解混模型通常應(yīng)用于現(xiàn)有光譜解混研究,并假設(shè)物質(zhì)與光譜存在一一對(duì)應(yīng)關(guān)系。然而,在實(shí)際應(yīng)用中,此類假設(shè)會(huì)產(chǎn)生嚴(yán)重的光譜類間變異性問(wèn)題。因此,需要在光譜解混中允許光譜端元存在變化以達(dá)到更加魯棒的解混效果。本次講座回顧現(xiàn)有針對(duì)端元變異問(wèn)題的研究,并對(duì)其分類,且在數(shù)據(jù)集進(jìn)行測(cè)試分析,以驗(yàn)證端元變異問(wèn)題對(duì)光譜解混的影響。此項(xiàng)工作由Lucas Drumetz在其博士期間研究完成。
Spectral Unmixing is an inverse problem in hyperspectral imaging which aims at recovering the spectra of the pure constituents of an image (called endmembers), as well as at estimating the proportions of said materials in each pixel (called abundances). A linear mixing model is typically used for this purpose, but this approach implicitly assumes that one spectrum can completely characterize each material, while in practice they are always subject to intra-class variability. Taking this phenomenon into account within an image amounts to allowing the endmembers to vary on a per-pixel basis. In this talk, we review and categorize the recent methods addressing this endmember variability and compare their results on a real dataset, thus showing the benefits of incorporating it in the unmixing chain. The work was conducted by Lucas Drumetz during his PhD.
 

全讯网12580a.com| 百家乐官网高科技| 状元百家乐的玩法技巧和规则| 百家乐博彩通博彩网皇冠网澳门赌场真人赌博| 长江百家乐的玩法技巧和规则| 棋牌游戏中心| 海立方百家乐官网海立方| 百家乐有多少网址| 大发888网页多少| 赌百家乐官网波音备用网| 巴厘岛百家乐官网娱乐城| 墓地风水24山| 大发888官方指定| 百家乐官网最好投| 大发888东方鸿运娱乐| 太阳城77娱乐城| 百家乐官网总厂在哪里| 百家乐庄闲筹码| 枞阳县| E世博百家乐官网的玩法技巧和规则| 大发888娱乐城casino| 电脑版百家乐官网下注技巧| 百家乐预约| 连城县| 网上百家乐有假的吗| 456棋牌游戏| 豪享博百家乐官网的玩法技巧和规则 | 百家乐怎么下注能赢| 大发888游戏平台hanpa| 闲和庄百家乐官网娱乐平台| 威尼斯人娱乐城上不了| 百家乐官网西园二手房| 全讯网5532555| 澳门百家乐官网单注下注| 发中发百家乐的玩法技巧和规则 | 百家乐官网赌博娱乐城| 大发888为什么这么卡| 黄金城百家乐官网手机用户| 大发888娱乐城电脑版下载| 百家乐官网赚水方| 闽侯县|