太阳城集团博彩网站-澳门太阳城老板向华强-太阳城集团亚洲

網(wǎng)站頁(yè)面已加載完成

由于您當(dāng)前的瀏覽器版本過(guò)低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗(yàn)。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當(dāng)前位置: 首頁(yè) · 學(xué)術(shù)交流 · 正文

學(xué)術(shù)交流

【學(xué)術(shù)報(bào)告】研究生靈犀學(xué)術(shù)殿堂第177期之Jingyu Liu報(bào)告會(huì)通知

發(fā)布時(shí)間:2017年06月20日 來(lái)源:研工部 點(diǎn)擊數(shù):

全校師生:

我校定于2017年6月21日舉辦研究生靈犀學(xué)術(shù)殿堂——Jingyu Liu報(bào)告會(huì),現(xiàn)將有關(guān)事項(xiàng)通知如下:

1.報(bào)告會(huì)簡(jiǎn)介

報(bào)告人:Jingyu Liu 教授

時(shí) 間:2017年6月21日(星期三)下午 14:30

地 點(diǎn):正禾賓館西三樓會(huì)議室

主 題:Challenges and opportunities in Imaging Genetics in Psychiatry

內(nèi)容簡(jiǎn)介: Since the approach of imaging genetics was first applied to psychiatry in early 2000, prominent advances have been documented along with excitement and frustration. Using schizophrenia as an example, GWASs leveraging unprecedented large samples have produced much reliable genetic risk variants for the disorder, while ENIGMA projects present resourceful genetic links with brain structure. Yet combining these two, no clear overlapping genetic architecture was observed, at least so far. Different research groups have different takes for the current status, and we believe it promotes sophisticated analytic methods, refined phenotypic angles, and in-depth biological model along genetics to brain while conducting imaging genetic analyses. We have demonstrated shared genetic risk for schizophrenia and brain structure in 6p22.1 through mutlivariate association analyses, and verified such genetic risks’ regulation role on DNA methylation and gene expression. And the risk alleles for schizophrenia derived from post-mortem brain tissues are consistent with the risk alleles for gray matter reduction of patients derived from in-vivo imagining. In parallel, we also investigated genetic regulated epigenetics, specifically DNA methylation Quantitative Trait Loci (mQTL), and methylation association with brain structure. We showed that epigenetics, incorporating both genetic risks and environmental factors, carry much stronger connections with brain than SNPs, and many of epigenetic variation regulated by genetics have cross tissue (brain, blood and saliva) correspondence, which opens up a way for future imaging-genetic analyses for psychiatric disorders.

2.歡迎各學(xué)院師生前來(lái)聽(tīng)報(bào)告。報(bào)告會(huì)期間請(qǐng)關(guān)閉手機(jī)或?qū)⑹謾C(jī)調(diào)至靜音模式。

黨委研究生工作部

電子信息學(xué)院

2017年6月19日

報(bào)告人簡(jiǎn)介

Jingyu Liu received the Master degree in electrical engineering from the Northern Jiaotong University, Beijing, China, and the Ph.D. degree in electrical engineering from the University of New Mexico (UNM), USA, in 2004. She is currently Associate Professor in Translational Neuroscience at Mind Research Network, Albuquerque, NM, and Research Professor in the Department of Electrical and Computer Engineering, UNM. Her research interests include design of multimodal data mining algorithms applied to biomedical data, such as brain imaging and signals, genetic and epigenetic data, clinical and neuropsychological assessments, etc. She has been focusing on the interdisciplinary research field to bridge engineering with neuroscience, and (epi)genetics, and has published more than 60 scientific journal papers, and led NIH supported projects for investigation of genetic influences on brain anomalies related to schizophrenia, ADHD, addiction, and Huntington’s disease.